Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 617
Filtrar
1.
Drug Saf ; 47(4): 355-363, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460070

RESUMO

BACKGROUND: Pulmonary toxicity has been associated with drug use. This is often not recognized in clinical practice, and underestimated. OBJECTIVE: We aimed to establish whether polymorphisms in certain genes corresponding with a metabolic pathway of drug(s) used are associated with pulmonary toxicity in patients with suspected drug-induced interstitial lung disease (DI-ILD). METHODS: This retrospective observational study explored genetic variations in three clinically relevant cytochrome P450 (CYP) iso-enzymes (i.e., CYP2D6, CYP2C9, and CYP2C19) in a group of patients with a fibroticinterstitial lung disease, either non-specific interstitial pneumonia (n = 211) or idiopathic pulmonary fibrosis (n = 256), with a suspected drug-induced origin. RESULTS: Of the 467 patients, 79.0% showed one or more polymorphisms in the tested genes accompanied by the use of drug(s) metabolized by a corresponding affected metabolic pathway (60.0% poor metabolizers and/or using two or more drugs [likely DI-ILD], 37.5% using three or more [highly likely DI-ILD]). Most commonly used drugs were statins (63.1%) with a predominance among men (69.4 vs 47.1%, p < 0.0001). Nitrofurantoin, not metabolized by the tested pathways, was prescribed more frequently among women (51.9 vs 4.5%, p < 0.00001). CONCLUSIONS: In our cohort with suspected DI-ILD, 79% carried one or more genetic variants accompanied by the use of drugs metabolized by a corresponding affected pathway. In 60%, the diagnosis of DI-ILD was likely, whereas in 37.5%, it was highly likely, based on CYP analyses. This study underlines the importance of considering both drug use and genetic make-up as a possible cause, or at least a contributing factor, in the development and/or progression of fibrotic lung diseases. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov identifier NCT00267800, registered in 2005.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Fibrose Pulmonar Idiopática , Doenças Pulmonares Intersticiais , Masculino , Humanos , Feminino , Doenças Pulmonares Intersticiais/induzido quimicamente , Doenças Pulmonares Intersticiais/genética , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/genética , Sistema Enzimático do Citocromo P-450/genética , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/complicações , Medição de Risco
3.
Respirology ; 29(4): 312-323, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38345107

RESUMO

BACKGROUND AND OBJECTIVE: Variants in surfactant genes SFTPC or ABCA3 are responsible for interstitial lung disease (ILD) in children and adults, with few studies in adults. METHODS: We conducted a multicentre retrospective study of all consecutive adult patients diagnosed with ILD associated with variants in SFTPC or ABCA3 in the French rare pulmonary diseases network, OrphaLung. Variants and chest computed tomography (CT) features were centrally reviewed. RESULTS: We included 36 patients (median age: 34 years, 20 males), 22 in the SFTPC group and 14 in the ABCA3 group. Clinical characteristics were similar between groups. Baseline median FVC was 59% ([52-72]) and DLco was 44% ([35-50]). An unclassifiable pattern of fibrosing ILD was the most frequent on chest CT, found in 85% of patients, however with a distinct phenotype with ground-glass opacities and/or cysts. Nonspecific interstitial pneumonia and usual interstitial pneumonia were the most common histological patterns in the ABCA3 group and in the SFTPC group, respectively. Annually, FVC and DLCO declined by 1.87% and 2.43% in the SFTPC group, respectively, and by 0.72% and 0.95% in the ABCA3 group, respectively (FVC, p = 0.014 and DLCO , p = 0.004 for comparison between groups). Median time to death or lung transplantation was 10 years in the SFTPC group and was not reached at the end of follow-up in the ABCA3 group. CONCLUSION: SFTPC and ABCA3-associated ILD present with a distinct phenotype and prognosis. A radiologic pattern of fibrosing ILD with ground-glass opacities and/or cysts is frequently found in these rare conditions.


Assuntos
Cistos , Fibrose Pulmonar Idiopática , Doenças Pulmonares Intersticiais , Masculino , Adulto , Criança , Humanos , Estudos Retrospectivos , Doenças Pulmonares Intersticiais/diagnóstico por imagem , Doenças Pulmonares Intersticiais/genética , Pulmão/diagnóstico por imagem , Proteína C Associada a Surfactante Pulmonar , Transportadores de Cassetes de Ligação de ATP/genética
4.
Aging (Albany NY) ; 16(4): 3200-3230, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38349858

RESUMO

BACKGROUND: Interstitial lung disease (ILD) encompasses a diverse group of disorders characterized by chronic inflammation and fibrosis of the pulmonary interstitium. Three ILDs, namely idiopathic pulmonary fibrosis (IPF), fibrotic hypersensitivity pneumonitis (fHP), and connective tissue disease-associated ILD (CTD-ILD), exhibit similar progressive fibrosis phenotypes, yet possess distinct etiologies, encouraging us to explore their different underlying mechanisms. METHODS: Transcriptome data of fibrotic lung tissues from patients with IPF, fHP, and CTD-ILD were subjected to functional annotation, network, and pathway analyses. Additionally, we employed the xCell deconvolution algorithm to predict immune cell infiltration in patients with fibrotic ILDs and healthy controls. RESULTS: We identified a shared progressive fibrosis-related module in these diseases which was related to extracellular matrix (ECM) degradation and production and potentially regulated by the p53 family transcription factors. In IPF, neuron-related processes emerged as a critical specific mechanism in functional enrichment. In fHP, we observed that B cell signaling and immunoglobulin A (IgA) production may act as predominant processes, which was further verified by B cell infiltration and the central role of CD19 gene. In CTD-ILD, active chemokine processes were enriched, and active dendritic cells (aDCs) were predicted to infiltrate the lung tissues. CONCLUSIONS: This study revealed shared and specific molecular and cellular pathways among IPF, fHP, and CTD-ILD, providing a basis for understanding their pathogenesis and identifying potential therapeutic targets.


Assuntos
Fibrose Pulmonar Idiopática , Doenças Pulmonares Intersticiais , Humanos , Transcriptoma , Doenças Pulmonares Intersticiais/genética , Fibrose Pulmonar Idiopática/genética , Fibrose , Perfilação da Expressão Gênica
5.
Front Immunol ; 15: 1326922, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38348044

RESUMO

Aging and cellular senescence are increasingly recognized as key contributors to pulmonary fibrosis. However, our understanding in the context of scleroderma-associated interstitial lung disease (SSc-ILD) is limited. To investigate, we leveraged previously established lung aging- and cell-specific senescence signatures to determine their presence and potential relevance to SSc-ILD. We performed a gene expression meta-analysis of lung tissues from 38 SSc-ILD and 18 healthy controls and found that markers (GDF15, COMP, and CDKN2A) and pathways (p53) of senescence were significantly increased in SSc-ILD. When probing the established aging and cellular senescence signatures, we found that epithelial and fibroblast senescence signatures had a 3.6- and 3.7-fold enrichment, respectively, in the lung tissue of SSc-ILD and that lung aging genes (CDKN2A, FRZB, PDE1A, and NAPI12) were increased in SSc-ILD. These signatures were also enriched in SSc skin and associated with degree of skin involvement (limited vs. diffuse cutaneous). To further support these findings, we examined telomere length (TL), a surrogate for aging, in the lung tissue and found that, independent of age, SSc-ILD had significantly shorter telomeres than controls in type II alveolar cells in the lung. TL in SSc-ILD was comparable to idiopathic pulmonary fibrosis, a disease of known aberrant aging. Taken together, this study provides novel insight into the possible mechanistic effects of accelerated aging and aberrant cellular senescence in SSc-ILD pathogenesis.


Assuntos
Fibrose Pulmonar Idiopática , Doenças Pulmonares Intersticiais , Escleroderma Sistêmico , Humanos , Doenças Pulmonares Intersticiais/genética , Doenças Pulmonares Intersticiais/complicações , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/complicações , Envelhecimento/genética , Senescência Celular/genética , Expressão Gênica , Escleroderma Sistêmico/complicações , Escleroderma Sistêmico/genética
6.
J Rheumatol ; 51(2): 130-133, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302188

RESUMO

OBJECTIVE: Rheumatoid arthritis (RA)-associated interstitial lung disease (ILD) is one of the most common and prognostic organ manifestations of RA. Therefore, to allow effective treatment, it is of crucial importance to diagnose RA-ILD at the earliest possible stage. So far, the gold standard of early detection has been high-resolution computed tomography (HRCT) of the lungs. This procedure involves considerable radiation exposure for the patient and is therefore unsuitable as a routine screening measure for ethical reasons. Here, we propose the analysis of characteristic gene expression patterns as a biomarker to aid in the early detection and initiation of appropriate, possibly antifibrotic, therapy. METHODS: To investigate unique molecular patterns of RA-ILD, whole blood samples were taken from 12 female patients with RA-ILD (n = 7) or RA (n = 5). The RNA was extracted, sequenced by RNA-Seq, and analyzed for characteristic differences in the gene expression patterns between patients with RA-ILD and those with RA without ILD. RESULTS: The differential gene expression analysis revealed 9 significantly upregulated genes in RA-ILD compared to RA without ILD: arginase 1 (ARG1), thymidylate synthetase (TYMS), sortilin 1 (SORT1), marker of proliferation Ki-67 (MKI67), olfactomedin 4 (OLFM4), baculoviral inhibitor of apoptosis repeat containing 5 (BIRC5), membrane spanning 4-domains A4A (MS4A4A), C-type lectin domain family 12 member A (CLEC12A), and the long intergenic nonprotein coding RNA (LINC02967). CONCLUSION: All gene products of these genes (except for LINC02967) are known from the literature to be involved in the pathogenesis of fibrosis. Further, for some, a contribution to the development of pulmonary fibrosis has even been demonstrated in experimental studies. Therefore, the results presented here provide an encouraging perspective for using specific gene expression patterns as biomarkers for the early detection and differential diagnosis of RA-ILD as a routine screening test.


Assuntos
Artrite Reumatoide , Doenças Pulmonares Intersticiais , Humanos , Feminino , Artrite Reumatoide/complicações , Artrite Reumatoide/genética , Doenças Pulmonares Intersticiais/etiologia , Doenças Pulmonares Intersticiais/genética , Biomarcadores , Perfilação da Expressão Gênica , RNA , Receptores Mitogênicos , Lectinas Tipo C
9.
Int J Mol Sci ; 25(2)2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38255821

RESUMO

Pulmonary hypertension (PH) with interstitial lung diseases (ILDs) often causes intractable conditions. CD26/Dipeptidyl peptidase-4 (DPP4) is expressed in lung constituent cells and may be related to the pathogenesis of various respiratory diseases. We aimed to clarify the functional roles of CD26/DPP4 in PH-ILD, paying particular attention to vascular smooth muscle cells (SMCs). Dpp4 knockout (Dpp4KO) and wild type (WT) mice were administered bleomycin (BLM) intraperitoneally to establish a PH-ILD model. The BLM-induced increase in the right ventricular systolic pressure and the right ventricular hypertrophy observed in WT mice were attenuated in Dpp4KO mice. The BLM-induced vascular muscularization in small pulmonary vessels in Dpp4KO mice was milder than that in WT mice. The viability of TGFß-stimulated human pulmonary artery SMCs (hPASMCs) was lowered due to the DPP4 knockdown with small interfering RNA. According to the results of the transcriptome analysis, upregulated genes in hPASMCs with TGFß treatment were related to pulmonary vascular SMC proliferation via the Notch, PI3K-Akt, and NFκB signaling pathways. Additionally, DPP4 knockdown in hPASMCs inhibited the pathways upregulated by TGFß treatment. These results suggest that genetic deficiency of Dpp4 protects against BLM-induced PH-ILD by alleviating vascular remodeling, potentially through the exertion of an antiproliferative effect via inhibition of the TGFß-related pathways in PASMCs.


Assuntos
Hipertensão Pulmonar , Doenças Pulmonares Intersticiais , Osteocondrodisplasias , Humanos , Animais , Camundongos , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/genética , Dipeptidil Peptidase 4/genética , Fosfatidilinositol 3-Quinases , Doenças Pulmonares Intersticiais/induzido quimicamente , Doenças Pulmonares Intersticiais/genética , Bleomicina/toxicidade , Camundongos Knockout , Fator de Crescimento Transformador beta/genética
10.
J Clin Invest ; 134(2)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38226623

RESUMO

Mutations in ATP-binding cassette A3 (ABCA3), a phospholipid transporter critical for surfactant homeostasis in pulmonary alveolar type II epithelial cells (AEC2s), are the most common genetic causes of childhood interstitial lung disease (chILD). Treatments for patients with pathological variants of ABCA3 mutations are limited, in part due to a lack of understanding of disease pathogenesis resulting from an inability to access primary AEC2s from affected children. Here, we report the generation of AEC2s from affected patient induced pluripotent stem cells (iPSCs) carrying homozygous versions of multiple ABCA3 mutations. We generated syngeneic CRISPR/Cas9 gene-corrected and uncorrected iPSCs and ABCA3-mutant knockin ABCA3:GFP fusion reporter lines for in vitro disease modeling. We observed an expected decreased capacity for surfactant secretion in ABCA3-mutant iPSC-derived AEC2s (iAEC2s), but we also found an unexpected epithelial-intrinsic aberrant phenotype in mutant iAEC2s, presenting as diminished progenitor potential, increased NFκB signaling, and the production of pro-inflammatory cytokines. The ABCA3:GFP fusion reporter permitted mutant-specific, quantifiable characterization of lamellar body size and ABCA3 protein trafficking, functional features that are perturbed depending on ABCA3 mutation type. Our disease model provides a platform for understanding ABCA3 mutation-mediated mechanisms of alveolar epithelial cell dysfunction that may trigger chILD pathogenesis.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Doenças Pulmonares Intersticiais , Células-Tronco Pluripotentes , Humanos , Células Epiteliais Alveolares/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Pulmão/patologia , Doenças Pulmonares Intersticiais/genética , Doenças Pulmonares Intersticiais/metabolismo , Doenças Pulmonares Intersticiais/patologia , Mutação , Células-Tronco Pluripotentes/metabolismo , Tensoativos/metabolismo
12.
Cells ; 12(24)2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-38132149

RESUMO

Protein citrullination is accomplished by a broad enzyme family named Peptidyl Arginine Deiminases (PADs), which makes this post-translational modification in many proteins that perform physiological and pathologic mechanisms in the body. Due to these modifications, citrullination has become a significant topic in the study of pathological processes. It has been related to some chronic and autoimmune diseases, including rheumatoid arthritis (RA), interstitial lung diseases (ILD), multiple sclerosis (MS), and certain types of cancer, among others. Antibody production against different targets, including filaggrin, vimentin, and collagen, results in an immune response if they are citrullinated, which triggers a continuous inflammatory process characteristic of autoimmune and certain chronic diseases. PAD coding genes (PADI1 to PADI4 and PADI6) harbor variations that can be important in these enzymes' folding, activity, function, and half-life. However, few studies have considered these genetic factors in the context of chronic diseases. Exploring PAD pathways and their role in autoimmune and chronic diseases is a major topic in developing new pharmacological targets and valuable biomarkers to improve diagnosis and prevention. The present review addresses and highlights genetic, molecular, biochemical, and physiopathological factors where PAD enzymes perform a major role in autoimmune and chronic diseases.


Assuntos
Artrite Reumatoide , Doenças Pulmonares Intersticiais , Humanos , Desiminases de Arginina em Proteínas/genética , Desiminases de Arginina em Proteínas/metabolismo , Doenças Pulmonares Intersticiais/genética , Proteínas , Doença Crônica
13.
Respir Med ; 220: 107464, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37951311

RESUMO

INTRODUCTION: Patients with interstitial lung disease (ILD) secondary to telomere biology disorders (TBD) experience increased morbidity after lung transplantation. Identifying patients with TBD may allow for personalized management to facilitate better outcomes. However, establishing a TBD diagnosis in adults is challenging. METHODS: A TBD screening questionnaire was introduced prospectively into the lung transplant evaluation. Patients with ILD screening positive were referred for comprehensive TBD phenotyping and concurrent telomere length measurement and germline genetic testing. RESULTS: Of 98 patients, 32 (33%) screened positive. Eight patients (8% of total; 25% of patients with a positive screen) met strict TBD diagnostic criteria, requiring either critically short lymphocyte telomeres (<1st percentile) (n = 4), a pathogenic variant in a TBD-associated gene (n = 1), or both (n = 3) along with a TBD clinical phenotype. Additional patients not meeting strict diagnostic criteria had histories consistent with TBD along with telomere lengths <10th percentile and/or rare variants in TBD-associated genes, highlighting a critical need to refine TBD diagnostic criteria for this patient population. CONCLUSION: A TBD phenotype screening questionnaire in patients with ILD undergoing lung transplant evaluation has a diagnostic yield of 25%. Additional gene discovery, rare variant functional testing, and refined TBD diagnostic criteria are needed to realize the maximum benefit of testing for TBD in patients undergoing lung transplantation.


Assuntos
Doenças Pulmonares Intersticiais , Transplante de Pulmão , Adulto , Humanos , Estudos Prospectivos , Doenças Pulmonares Intersticiais/diagnóstico , Doenças Pulmonares Intersticiais/genética , Doenças Pulmonares Intersticiais/cirurgia , Telômero/genética , Biologia
14.
Yakugaku Zasshi ; 143(11): 911-916, 2023.
Artigo em Japonês | MEDLINE | ID: mdl-37914338

RESUMO

Interstitial lung disease (ILD) is a serious adverse event common to many molecular targeted anticancer drugs. The development of ILD significantly reduces the QOL of patients and results in treatment discontinuation. Because the development of ILD is also associated with therapeutic efficacy, the establishment of prediction strategies for ILD is important. We have focused on signal transducer and activator of transcription 3 (STAT3) as an important mechanistic factor in ILD induced by molecular targeted drugs. Our study aimed to establish mechanism-based ILD prediction strategies; therefore, we investigated the hypothesis that a genetic polymorphism in STAT3 is a predictive factor of the incidence of ILD induced by mammalian target of rapamycin (mTOR) inhibitors, a class of molecular targeted drugs associated with a higher incidence of ILD. Our clinical study clearly demonstrated that the rate of ILD induced by mTOR inhibitors was significantly higher in patients with the G allele homozygous genotype of STAT3 -1697C>G compared with those with other genotypes. The cumulative incidence of ILD in patients with the G allele homozygous genotype was significantly higher compared with that in patients carrying other genotypes. Furthermore, our in vitro study indicated that the epithelial-to-mesenchymal transition (EMT), a pre-process of tissue fibrosis, was induced by an mTOR inhibitor in lung alveolar epithelial cell lines carrying the G allele homozygous genotype which was associated with a higher risk of ILD. Our study provided a novel predictive strategy for the development of ILD induced by molecular targeted drugs.


Assuntos
Doenças Pulmonares Intersticiais , Humanos , Doenças Pulmonares Intersticiais/induzido quimicamente , Doenças Pulmonares Intersticiais/genética , Doenças Pulmonares Intersticiais/epidemiologia , Terapia de Alvo Molecular/efeitos adversos , Qualidade de Vida , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores
15.
Zhongguo Dang Dai Er Ke Za Zhi ; 25(11): 1186-1190, 2023 Nov 15.
Artigo em Chinês | MEDLINE | ID: mdl-37990466

RESUMO

The patient is a female infant, 4 months and 9 days old, who was admitted to the hospital due to recurrent fever, cough, and hepatomegaly for over a month. The patient was a healthy full-term infant with a normal birth history. At 2 months and 22 days after birth, she developed recurrent fever, cough, and respiratory distress. Chest imaging revealed diffuse bilateral lung lesions, and fiberoptic bronchoscopy showed interstitial changes in both lungs. These suggested the presence of interstitial lung disease. The patient also presented with hepatomegaly, anemia, hyperlipidemia, hypothyroidism, and malnutrition. Genetic testing indicated compound heterozygous variations in the MARS1 gene. This mutation can cause interstitial lung and liver disease, which is a severe rare disorder that typically manifests in infancy or early childhood. It is inherited in an autosomal recessive manner and characterized by early-onset respiratory insufficiency and liver disease in infants or young children. Since its first reported case in 2013, as of June 2023, only 38 related cases have been reported worldwide. This article reports the multidisciplinary diagnosis and treatment of interstitial lung and liver disease in an infant caused by MARS1 gene mutation.


Assuntos
Hepatopatias , Doenças Pulmonares Intersticiais , Feminino , Humanos , Lactente , Tosse , Hepatomegalia/patologia , Pulmão/patologia , Doenças Pulmonares Intersticiais/diagnóstico , Doenças Pulmonares Intersticiais/genética , Doenças Pulmonares Intersticiais/patologia , Mutação
16.
EBioMedicine ; 98: 104883, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37995465

RESUMO

BACKGROUND: Systemic sclerosis-interstitial lung disease (SSc-ILD) is the leading cause of death in patients with SSc. There is an unmet need for predictive biomarkers to identify patients with SSc at risk of ILD. Previous studies have shown that interferon (IFN) pathways may play a role in SSc. We assessed the use of C-X-C motif chemokine ligand 10 (CXCL10) as a predictive biomarker for new onset of ILD in patients with SSc. METHODS: One-hundred-sixty-five (Female, N = 130) patients with SSc (SSc-ILD, N = 41) and 13 (Female, N = 8) healthy controls were investigated retrospectively. CXCL10 protein levels were measured by ELISA. We performed log rank analysis with baseline CXCL10 serum levels. CXCL10 nanoString data from lung tissues obtained from transplanted patients with SSc-ILD were extracted. Fifteen (Female, N = 10) patients with SSc (SSc-ILD, N = 7) were recruited for bronchoalveolar lavage (BAL) procedure. Lung fibroblasts were treated with BAL-fluid or serum from patients with SSc with or without ILD. Inflammatory/fibrotic genes were assessed. FINDINGS: Serum CXCL10 levels were higher in patients with SSc-ILD compared to SSc patients without ILD [Median (IQR):126 pg/ml (66-282.5) vs. 78.5 pg/ml (50-122), P = 0.029, 95% CI: 1.5 × 10-6 to 0.4284]. Survival analysis showed that baseline CXCL10 levels >78.5 pg/ml have a 2.74-fold increased risk of developing new onset of ILD (Log-rank: P = 0.119) on follow-up. CXCL10 levels in BAL supernatant were not different in patients with SSc-ILD compared to SSc without ILD [76.1 pg/ml (7.2-120.8) vs. 22.3 pg/ml (12.1-43.7), P = 0.24, 95% CI: -19.5 to 100]. NanoString showed that CXCL10 mRNA expression was higher in inflammatory compared to fibrotic lung tissues [4.7 (4.2-5.6) vs. 4.3 (3.6-4.7), P = 0.029]. Fibroblasts treated with SSc-ILD serum or BAL fluids overexpressed CXCL10. INTERPRETATIONS: Clinical, transcriptomic, and in vitro data showed that CXCL10 is potentially involved in early SSc-ILD. More research is needed to confirm whether CXCL10 can be classified as a prospective biomarker to detect patients with SSc at higher risk of developing new onset ILD. FUNDING: This collaborative project is co-financed by the Ministry of Economic Affairs and Climate Policy of the Netherlands utilizing the PPP-allowance made available by the Top Sector Life Sciences & Health to stimulate public-private partnerships (PPP-2019_007). Part of this study is financially supported by Sanofi Genzyme (NL8921).


Assuntos
Doenças Pulmonares Intersticiais , Escleroderma Sistêmico , Feminino , Humanos , Biomarcadores , Quimiocina CXCL10/genética , Perfilação da Expressão Gênica , Ligantes , Pulmão , Doenças Pulmonares Intersticiais/genética , Estudos Observacionais como Assunto , Estudos Retrospectivos , Escleroderma Sistêmico/complicações , Escleroderma Sistêmico/genética , Masculino
17.
Hereditas ; 160(1): 37, 2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-37978541

RESUMO

Interstitial lung diseases (ILDs), or diffuse pulmonary lung disease, are a subset of lung diseases that primarily affect lung alveoli and the space around interstitial tissue and bronchioles. It clinically manifests as progressive dyspnea, and patients often exhibit a varied decrease in pulmonary diffusion function. Recently, variants in telomere biology-related genes have been identified as genetic lesions of ILDs. Here, we enrolled 82 patients with interstitial pneumonia from 2017 to 2021 in our hospital to explore the candidate gene mutations of these patients via whole-exome sequencing. After data filtering, a novel heterozygous mutation (NM_025099: p.Gly131Arg) of CTC1 was identified in two affected family members. As a component of CST (CTC1-STN1-TEN1) complex, CTC1 is responsible for maintaining telomeric structure integrity and has also been identified as a candidate gene for IPF, a special kind of chronic ILD with insidious onset. Simultaneously, real-time PCR revealed that two affected family members presented with short telomere lengths, which further confirmed the effect of the mutation in the CTC1 gene. Our study not only expanded the mutation spectrum of CTC1 and provided epidemiological data on ILDs caused by CTC1 mutations but also further confirmed the relationship between heterozygous mutations in CTC1 and ILDs, which may further contribute to understanding the mechanisms underlying ILDs.


Assuntos
Doenças Pulmonares Intersticiais , Encurtamento do Telômero , Humanos , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo , População do Leste Asiático , Mutação , Doenças Pulmonares Intersticiais/genética , Telômero/genética
19.
Semin Fetal Neonatal Med ; 28(6): 101500, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38036307

RESUMO

Genetic disorders of surfactant dysfunction are a rare cause of chronic, progressive or refractory respiratory failure in term and preterm infants. This review explores genetic mechanisms underpinning surfactant dysfunction, highlighting specific surfactant-associated genes including SFTPB, SFTPC, ABCA3, and NKX2.1. Pathogenic variants in these genes contribute to a range of clinical presentations and courses, from neonatal hypoxemic respiratory failure to childhood interstitial lung disease and even adult-onset pulmonary fibrosis. This review emphasizes the importance of early recognition, thorough phenotype assessment, and assessment of variant functionality as essential prerequisites for treatments including lung transplantation. We explore emerging treatment options, including personalized pharmacological approaches and gene therapy strategies. In conclusion, this comprehensive review offers valuable insights into the pathogenic mechanisms of genetic disorders of surfactant dysfunction, genetic fundamentals, available and emerging therapeutic options, and underscores the need for further research to develop personalized therapies for affected infants and children.


Assuntos
Doenças Pulmonares Intersticiais , Insuficiência Respiratória , Lactente , Criança , Adulto , Recém-Nascido , Humanos , Proteína B Associada a Surfactante Pulmonar/genética , Recém-Nascido Prematuro , Mutação , Doenças Pulmonares Intersticiais/genética , Doenças Pulmonares Intersticiais/terapia
20.
Cell Mol Biol (Noisy-le-grand) ; 69(11): 167-172, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38015523

RESUMO

Interstitial lung diseases (ILD) comprise a heterogeneous group of lung disease characterized by common clinical syndromes and patterns of lung injury which poses growing burden on the health and social economic consequences. Its etiology remains elusive. By integrating transcriptome-wide association studies analysis of ILD and chemical-gene interaction networks implemented by CGSEA software, we systematically evaluated the association between ILD and 11,190 chemicals in this study. We detected several chemicals significantly associated with ILD (permutated empirical P values < 0.05). Briefly, a total of 56 chemicals were detected for ILD in lung tissue, 121 in whole blood respectively. Among the chemicals identified for ILD in lung tissue and whole blood, we found 7 common chemicals, including St. Thomas' Hospital cardioplegic solution, cytarabine, ginsenoside Rg3, cholecalciferol, fluoxetine, oxidized-L-alpha-1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine and excitatory amino acid agonists. Our findings shed lights on the underlying impact of chemical exposure on the development and progression of ILD, which will pave the way for more effective prevention and treatment strategies, ultimately improving the health outcomes and quality of life of those affected by ILD.


Assuntos
Doenças Pulmonares Intersticiais , Qualidade de Vida , Humanos , Transcriptoma/genética , Doenças Pulmonares Intersticiais/genética , Colecalciferol , Fluoxetina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...